Lecture 8.1: HW1 Discussion

Question 1

- Consider $f(x)=x_{1} \ldots x_{m}$, where $m \leqslant \log ^{c} n$
- These functions are hard to invert because an adversary takes $n \geqslant 2^{m^{1 / c}}$ time to write down the pre-image

Question 2

- $\nu(\cdot)$ is negligible if: \forall polynomial $p(\cdot), \exists n_{0} \in \mathbb{N}$ such that $\forall n \geqslant n_{0}$ we have: $\nu(n) \leqslant 1 / p(n)$
- $\nu(\cdot)$ is non-negligible if: \exists polynomial $p(\cdot)$ such that $\forall n_{0} \in \mathbb{N}$ there exists $n \geqslant n_{0}$ such that: $\nu(n)>1 / p(n)$
- "Eventually" operator: $\exists n_{0} \in \mathbb{N}$ such that $\forall n \geqslant n_{0}$
- "Infinitely often" operator: $\forall n_{0} \in \mathbb{N}$ there exists $n \geqslant n_{0}$
- Think: Contrapositive of statements in security proofs and the use of "non-negligible" functions
- Since we do not know how to efficiently enumerate primes, we define $f(x, y)=x \cdot y$
- Use the fact that Π_{n} (the set of all primes with n-bit representations) is dense in $\{0,1\}^{n}$
- See: Theorem 33.5 in lecture notes by Pass-Shelat

Question 4

- Think: How two-repetition of a weak one-way function makes it harder to invert
- Intuition: To invert $g\left(x_{1}, \ldots, x_{m}\right)=f\left(x_{1}\right) \ldots f\left(x_{m}\right)$ we need to invert all
- See: Theorem 35.1 in lecture notes by Pass-Shelat

Question 5

- Levin's OWF
- If there exists a OWF then there exists a OWF with small running time
- Levin's OWF: $f^{*}(M, x)$ outputs the execution of $M(x)$ if it has small running time; otherwise 0

Question 6

- Setting:
- How to prove: "Some Cryptographic Primitive" implies OWF?
- We shall show the contrapositive: not-OWF implies not-"Some Cryptographic Primitive"
- [Impagliazzo-Luby-89,Impagliazzo-Thesis-90] showed: not-OWF implies not-distributionally-OWF
- Suffices: not-distributionally-OWF implies not-"Some Cryptographic Primitive"
- Uniform Generation Problem for NP [Jerrum-Valiant-Vazirani-86,Bellar-Goldreich-Petrank-00]:
Uniformly reverse sample x such that $f(x)=y$
- not-distributionally-OWF: Uniformly reverse sample x such that $f(x)=y$, where $y=f\left(U_{n}\right)$ and the distortion is arbitrary " 1 /poly" small
- Former is "worst-case" while the latter is "average-case" notion

